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ABSTRACT

A novel technique for analyzing generalized

&plane septa discontinuities is proposed in this

paper. A set of numerical results are given. The

curves for unilateral septa and symmetrical

bilateral septahave agoed agreement with [3].

They show that the present method is precise and

reliable. The curves for asymmetrical bilateral

septa have not been revealed ever before in

literatures.

INIl?ODUCTION

The E-plane filters composed of all netal

septa or unilateral and bilateral longitudinal

septa with full height are prefered for millimeter

wave band-pass filters due to their simpler

structure and low cost. It is necessary to calcu-

late the equivalent parameters of the discontinuity

before designing the filters. The generalized con-

figuration of E-plane septa is shown in Fig.1.

A few authors have investigated the discontinuities

of scme specific configurations. Schwinger [2]

treated all metal septa by the traditional vari-

tioml methcd. Shih [3] analyzed single unilateral

and bilateral longitudinal septa by the nzdified

residue calculas technique (MRCT). These rtiethcds

are restricted to unilateral or symmetrical bila–

teral septa with equal length and are difficult to

be extended to asymmetrical bilateral septa or

multiple parallel–connected longitudinal septa as

shown in Fig.1.

In present paper a novel technique ccmbining

resonance methcd with SDT is propsed for gene-

ral@ed of E-plane septa discontinuities includirg

unilateral, symmetrical bilateral as well as

asymmetrical bilateral septa. The numerical results

given for asymmetrical bilateral septa have not

been revealed yet in literatures.

THEORETICAL ANALYSIS

Fig.2 is the equivalent T–netvmrk of Fig.1.

In case of lossless line, the imaginary equivalent

parameters can be obtained by resonance methcd . AC

first, suppose two ideal metallic shorting planes

are inserted at some distance away from the refer–

ence planes of the discontinuity so that the confi-

gurationkcomes a lossless resonator. It is assumed

that only don@ant nmde can propagate in the region

outside the reference plane of the discontinuity.

The highern-cdes excited by the disconti~tity are

negligible at the shorting planes. The resonator is

e@valent to. a network as shown in Fig.3. If the

discontinuity is longitudinally symmetrical then

‘II* ’22.
When the discontinuity is excited in oddmde

the symmetrical plane beccmes an electric wall and

the resonance condition is

‘11=- ‘o (la)

Similarly when excited in even mode, the symmetrical

plane is a magnetic wall and the resonance condition

becomes

’11+ 2Z12= - ‘e
(lb)

where Zoand Ze are the cdd and even nmde impedance

respectively at the reference plane towards

shorting plane.

z
o(e)

= j tan(/310(e)) (2)
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#is the phase constant of dominant mode which can

be determined in advance [11.

It is obvious that if lo(e) is known both Zll

and ’12
can be obtained from equation (1) amd (2).

‘ssdn~a %0 mode incident wave, the higher

ties excitedat the discontinuity will be~ti

nmde only becauae E–plane longitudiml septa are

invariant in y-direction. The total fields in the

closed resonator can be expressed in terms of

Hertz vector potentialfi only with y–component.

E = -jo>fi

n=vx~

iT=l-r(x,z)Gy

where~(x,z) satisfies Helmholtz equation:

(3)

(4)

Refering to Fig.4 the Fourier transformation

oflT(x,z) is introduced with respect to z via

[

B

%(x,pn) = lT(x,z) ej~nzdz (5)

J -B

Wherepn is discrete spectra in z-direction and

for elec. wall

{-

~n . ‘c

(n-%)~ for msg. wall
B

In the spectral domain eq.(4) becomes

tib+y;~i= o (6)

a X2 ‘n

i=l,2,3

The solutionof eq. (6) is

fil(x) =

ff2(x) =

F3(X) =

Ansh(V1nx)

‘ ~ (x-al) (7)Bnsh]2n(x–al) + Cncn Zn

Dnsh~ln(a-x)

The lmundary conditions to be imposed on~i(i=l,2,3)

are

t
X=al+d -.. 0, for unilateral

aT2 li3—.

{
>Xn=y

2y ‘
for bilateral

(8a)

(8b)

w

‘ere Jly ad ‘2y
represent the Fourier transfor–

mation of surface current on the septa at X=al and

X=alid respectively.

For unilateral case

(9)

N

where G is the Green function in spectral domain.

For bilateral case the potentials on the surface

Xal and x.al+d represented by%l andfi2 can be

expressed as

(lo)

The elements of Green function matrices (~~are

functions of ~1nand?2n. Using Galerkin’s =thod

and choosing an appropriate set of current base

functions J
ly,m

and J
2y,m

, a matrix equation for

expansion coefficients will result:

[K][C] = O (11

where Cm is the coefficient of base function of

surface currents. For unilateral case

[K? = [Kiml~x~ (12

@a

‘im’Z ‘ly,i
‘F3’

ly,mn=.w

For bilateral case

[)[Kll] [K121
[K] =

(13)

[qll [K22]
(~+~)x(M1+M2)

Where the element of [Kpq] , (p,q=l,2) is
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p,q)im=> ‘py, iGpqJqy,m(K (14)

n= .00

The necessary and sufficient condition for solving

(11) is

det [K] =0 (15)

which is an eigenvalue equation of lo(e). Eq. (15)

is a no~inear function of both CJ and lo(e), from

which the resonance distance lo(e) can be canputed

if theoperating frequency @is given. Then 1 -
o(e) 1s

substituted into eq.(1) and (2) to obtain the

equivalent parameters of the discontinuity.

NUMERICAL RESULTS

The above technique is used to compute uni–

lateral and equal length bilateral septa at Ka-

baml. The numerical results are shown in Fig.5

and Fig.6 respectively. It is obvious that Fig.6

has a good agreement with [3]. Fig.7 shows the

equivalent parameters of asymmetrical bilateral

septa which has not been revealed yet in litera–

tures.

CONCLUSIONS:

‘Ihe resonance methcd combining with spectral

domain technique is used to analyze a generalized

E–plane longitudinal septa discontinuities. The

numerical results show that the present method is

effective and reliable. It is straightforward to

extend the methcd for mxe complicated cases such

as multiple parallel-connected longitudinal septa

in filters or single–layered septa in directional

couplers.
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Fig.1 E–plane septa Discontinuity
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Fig.2 Equivalent Network

Fig.3 Closed Resonator
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Fig.4 Asymmetrical Bilateral Septa
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Fig.5 The Equivalent Parameters of Unilateral Septm
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Fig.6 The Equivalent Parameters of Symmetrical Bilateral Septa (W1=W2=W)

a= 7.l12mn, al= %(a-d), d= 0.254nKrI, ~r= 2.22
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Fig. 7 The Equivalent Parameters of Asymmetrical Bilateral Septa

a= 7.112~, al= %(a-d), d= o.25ti, &r= 2.22
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